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Fundamental Wave Phenomena on Biased-Ferrite
Planar Slab Waveguides in Connection With

Singularity Theory
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Abstract—In this paper, characteristic dispersion phenomena
and interactions of the discrete surface- and leaky-wave modes
supported by a grounded biased-ferrite slab waveguide are
analyzed using singularity and critical-point theory. Surface- and
space-wave leaky modes are studied for different orientations of
the applied magnetic bias field. As the bias field is rotated away
from a coordinate axis, the modes become hybrid, and mode cou-
pling or modal degeneracies may occur. Mode coupling, in general,
is governed by a Morse critical point (MCP), and the behavior of
the MCP is found to be useful in explaining and predicting modal
behavior on this complicated waveguiding structure. In addition,
leaky-wave dispersion behavior and leaky-wave cutoff associated
with a fold singular point is studied by varying the orientation of
the applied magnetic bias field.

Index Terms—Critical points, ferrite slab, leaky waves, mode
coupling, singularity theory, surface waves.

I. INTRODUCTION

FERRITE materials have been extensively used in various
nonreciprocal devices such as phase shifters, polarizers,

and isolators, where the electromagnetic properties of such
devices can be controlled by varying the applied magnetic bias
field [1]–[3]. A comprehensive literature review of microwave
ferrite technology and various ferrite components, including
circulators, isolators, phase shifters, YIG filters, and nonlinear
magnetic microwave devices is given in [4].

Regarding fundamental modal phenomena, surface magneto-
static and dynamic modes supported by ferrite structures have
been of primary interest for a long time. Surface magnetostatic
and dynamic modes of a biased-ferrite slab waveguide were
studied in [5]–[9], and magnetostatic volume and surface waves
on printed strip and slot lines and circular microstrip resonators
were recently investigated in [3], [10], and [11]. Complex modes
in ferrite loaded parallel-plate waveguides and shielded finlines
were analyzed in [12] and [13], respectively. There has also been
some work on the analysis of leaky waves on ferrite slabs in the
form of radiating space-wave modes [14], [15].

In this paper, we present a study of surface waves and
space-wave leaky waves on a grounded ferrite slab waveguide
biased with an arbitrarily oriented applied magnetic field
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Fig. 1. Grounded ferrite slab waveguide with an arbitrarily oriented applied
magnetic bias field.

(Fig. 1). The analysis is based on the numerical solution of an
integral equation formulated for an equivalent volume current
density [16] and uses principles of singularity theory. Of
primary interest is the connection between various critical and
singular points and modal phenomena. In this regard, Morse
critical points (MCPs) were originally introduced in [17] and
[18] for the analysis of modal coupling, and have been applied
in a variety of guided-wave and resonant structures [19]–[25].
Singular points and complex-frequency branch points have
been studied in [26] and [27] in the analysis of leaky-wave
cutoff behavior on printed transmission lines. In this paper,
fundamental modal phenomena are studied for biased-ferrite
slabs with an arbitrarily oriented magnetic bias field (although
numerical results are included only for the case of the bias field
in the plane of the slab), with an emphasis on the application of
critical-point theory.

II. THEORY

Consider the two-dimensional planar waveguide depicted in
Fig. 1, which is invariant along the waveguiding -axis. A
rigorous formulation of the natural-mode problem ( time
variation) yields

(1)

where is the complex-valued modal propagation constant,
is the angular frequency, is the dielectric permittivity of the
ferrite slab, and represents the amplitude coefficients in a
modal-field distribution. The dyadic permeability is given by

(2)
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where , ,
, , is the dc magnetic bias field,

is the material saturation magnetization,
10 kg coul, and

(3)

represents a rotation matrix that fixes the position of the bias
field; is the transpose of .

Nontrivial solutions of (1) are obtained from the implicit
dispersion equation

(4)

and, more generally, is a mapping ,
i.e., given , , and only for certain values of is .

By treating as a pair of complex variables, a study of
the properties of the mapping leads to the analysis of critical
points, singular points, and associated complex frequency-plane
branch points, which explain modal phenomena [24]–[27]. As-
suming that , , and have specified values if

(5)

then is an MCP of the mapping where

If

(6)

then is a fold singular point of the mapping
. Both MCPs and fold singular points have been found to be

useful in describing modal phenomena with fold singular points
being associated with modal cutoff.

The inequality in (5) assumes a real-valued ,
which occurs for mode coupling on lossless waveguides. In the
event of material loss, the first two conditions in (5) remain
valid and define complex-valued critical points of the mapping

. Numerical experiments for lossy structures show that these
critical points occur in the event of mode coupling, although
the theoretical connection with coupled-mode theory is more
difficult to establish. In this paper, we concentrate on lossless
structures, such that the MCP (and ) is real valued
whenever mode coupling occurs.

III. NUMERICAL RESULTS AND DISCUSSIONS

Dispersion behavior of the first several modes on a biased-fer-
rite waveguide (Fig. 1) is shown in Fig. 2 for cm,

, G, and G with the bias
field oriented along the -axis ( ). For
each mode ( ), two fold singular points exist at the
location of leaky-mode cutoff frequencies (one each for the for-

Fig. 2. Dispersion behavior of magnetostatic, TE, and TM surface waves and
associated space-wave leaky waves on a grounded ferrite slab waveguide with
d = 0:5 cm, � = 15� , H = 100 G, and � M = 1000 G. The applied
magnetic bias field is along the (�x)-direction (� = 90 ; � = 180 ). The
magnetostatic modes are the predominantly vertical curves emanating from
approximately (!=2� = 1 GHz).

Fig. 3. Dispersion behavior of EH and HE hybrid surface waves and
associated space-wave leaky waves on a grounded ferrite slab waveguide with
the applied magnetic bias field oriented at � = 90 and � = 120 . Mode
coupling (mode transformation) of backward HE and EH surface waves
occurs at approximately 4.7 GHz.

ward and backward modes). Although the dispersion behavior
is fairly complicated, there is no coupling between modes. Note
that for this orientation of the bias field, TM modes are recip-
rocal (forward and backward waves propagate with the same
velocity), although TE modes are significantly nonreciprocal.
Dispersion curves for surface magnetostatic (the predominately
vertical curves on the left-hand side of the plot) and dynamic
modes shown in Fig. 2 are in excellent agreement with those
presented in [8].

In Fig. 3, the magnetic bias field is rotated away from the
-coordinate axis ( ). Dynamic modes are no

longer purely TE or TM, and the dispersion behavior is more
complicated than in the previous case. By rotating the magnetic
bias field, TM modes become nonreciprocal (for instance, con-
sider the hybrid modes shown in Fig. 3), such that the
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Fig. 4. Close-up of Fig. 3 (� = 90 ; � = 120 ) showing the mode
transformation of backward HE and EH hybrid surface waves. An MCP is
identified in the mode-coupling region.

Fig. 5. Dispersion behavior of TE and TM surface waves and associated
space-wave leaky waves on a grounded ferrite slab waveguide when the applied
magnetic bias field is along the (+y)-direction (� = 90 ; � = 90 ). Note
that forward and backward TE and TM surface waves propagate with the same
velocity.

leaky-wave cutoff (fold point) in the reciprocal case splits into
two cutoff points (two fold points) associated with forward and
backward leaky waves. Also, mode coupling occurs between
the hybrid and backward modes at approximately
4.7 GHz, resulting in characteristic hyperbolic-type behavior.
Fig. 4 shows a close-up of the mode-coupling region where
mode transformation occurs. Also shown in this
figure is the associated MCP that governs this type of behavior,
located at . The local structure
depicted in Fig. 4 represents qualitative and quantitative struc-
tural behavior in the mode-coupling region. It is obtained as a
Taylor polynomial of order 2 of the dispersion function in the
vicinity of the MCP (e.g., see [24, eqs. (3) and (4)]).

As the bias field is further rotated to become oriented in the
-direction ( ), pure TE and TM modes

again exist, and neither TE, nor TM modes exhibit nonreciprocal
behavior, as shown in Fig. 5.

Fig. 6. Evolution of imaginary part of the complex Morse frequency with
varying orientation of the magnetic bias field in the (x�y)-plane (�-variation).
It is found that the Morse frequency is only real valued within the range of
� 2 [105:7 ; 123:8 ], which is associated with a mode-coupling region of
backward HE and EH hybrid surface waves.

Fig. 7. Dispersion behavior of backward HE and EH hybrid surface waves
when the applied magnetic bias field is oriented at � = 90 , � = 100 . Note
that the modes do not couple (consistent with Fig. 6) and there is no mode
transformation.

Since mode coupling is governed by the presence of an MCP
[24], the behavior of the MCP can be used to predict the occur-
rence of mode coupling. For example, in Fig. 6, the imaginary
part of the MCP is shown as the bias angle ( ) varies. Although
the MCP exists for all , as shown in this figure,
it is only real valued for . In this range,
the MCP lies on the real-frequency axis, such that, as frequency
varies, the MCP is encountered and mode coupling is exhib-
ited. For , mode coupling does not occur
since the MCP is not encountered as frequency varies (it lies
off the real-frequency axis, in the complex plane) (see [25]). As
an example, the and modes are shown in Fig. 7 for
( ), where it is clear that the modes do not
couple.

Mode coupling is generally considered to be the result of
some perturbation of symmetry, in this case, due to a misaligned
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Fig. 8. Mode-coupling factor of backward HE and EH hybrid surface
waves versus the orientation of the magnetic bias field in the (x � y)-plane
(�-variation). It is observed that at � = 110:3 and � = 115:8 , the
mode-coupling factor is zero, corresponding to the degeneracy of the hybrid
waves.

Fig. 9. Dispersion behavior of backward HE and EH hybrid surface waves
when the applied magnetic bias field is oriented at � = 90 , � = 115:8 . A
degenerate MCP is identified at the intersection of dispersion curves (a point of
modal degeneracy).

bias field. As discussed above, even in the event of a misaligned
bias field, mode coupling may exist only over a certain range
of parameters, which can be explained by considering when the
MCP lies on the real-frequency axis. However, within this range
(e.g., for the structure discussed above),
mode coupling may disappear at certain points that are asso-
ciated with a modal degeneracy. The concept of an MCP can
be used to fruitfully examine these phenomena. In particular, it
is shown in [24] that, consistent with traditional coupled-mode
theory, in general, coupled modes can be related to uncou-
pled modes by

(7)

where the mode-coupling factor for codirectional coupled
modes is

(8)

and where for codirectional power flow
and mode coupling between two forward (backward) traveling
waves. If , by (7), the modes are degenerate ( ).
For example, in Fig. 8, the mode-coupling factor is shown
for the range of angles ( ) over which the MCP lies on the
real-frequency axis. At two angles, and ,
the mode-coupling factor is zero, such that the modes are
degenerate. In Fig. 9, the and modes are shown for
the degenerate case , . A degenerate MCP
[having in addition to the conditions (5)] is
located at the point of modal degeneracy. Therefore, modal
coupling is indicated by the presence of an MCP lying on
the real-frequency axis, and modal degeneracies are indicated
by the MCP being degenerate.

IV. CONCLUSION

Mode coupling and characteristic dispersion phenomena of
surface waves and space-wave leaky waves on a grounded
biased-ferrite slab waveguide have been analyzed using singu-
larity and critical-point theory. Modal characteristics have been
described for different orientations of the applied magnetic
bias field. It has been shown that the behavior of the MCP
can be used to characterize qualitatively and quantitatively the
presence or absence of mode coupling and mode degeneracies.
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